Package: vccp 0.1.1

vccp: Vine Copula Change Point Detection in Multivariate Time Series

Implements the Vine Copula Change Point (VCCP) methodology for the estimation of the number and location of multiple change points in the vine copula structure of multivariate time series. The method uses vine copulas, various state-of-the-art segmentation methods to identify multiple change points, and a likelihood ratio test or the stationary bootstrap for inference. The vine copulas allow for various forms of dependence between time series including tail, symmetric and asymmetric dependence. The functions have been extensively tested on simulated multivariate time series data and fMRI data. For details on the VCCP methodology, please see Xiong & Cribben (2021).

Authors:Xin Xiong [aut, cre], Ivor Cribben [aut]

vccp_0.1.1.tar.gz
vccp_0.1.1.zip(r-4.5)vccp_0.1.1.zip(r-4.4)vccp_0.1.1.zip(r-4.3)
vccp_0.1.1.tgz(r-4.4-any)vccp_0.1.1.tgz(r-4.3-any)
vccp_0.1.1.tar.gz(r-4.5-noble)vccp_0.1.1.tar.gz(r-4.4-noble)
vccp_0.1.1.tgz(r-4.4-emscripten)vccp_0.1.1.tgz(r-4.3-emscripten)
vccp.pdf |vccp.html
vccp/json (API)
NEWS

# Install 'vccp' in R:
install.packages('vccp', repos = c('https://xinxiong0238.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/xinxiong0238/vccp/issues

On CRAN:

2.70 score 1 stars 1 scripts 128 downloads 3 exports 10 dependencies

Last updated 3 years agofrom:49f2182ac1. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 10 2024
R-4.5-winOKNov 10 2024
R-4.5-linuxOKNov 10 2024
R-4.4-winOKNov 10 2024
R-4.4-macOKNov 10 2024
R-4.3-winOKNov 10 2024
R-4.3-macOKNov 10 2024

Exports:getTestPlotmvn.sim.2.cpsvccp.fun

Dependencies:ADGofTestlatticeMASSmisc3dmosummvtnormplot3DRColorBrewerRcppVineCopula